毕业论文
您现在的位置: 智能建筑 >> 智能建筑发展 >> 正文 >> 正文

建筑人工智能,未来在何方

来源:智能建筑 时间:2022/8/30

文章来源于AIG建筑智能研究组,作者:郑豪

人工智能的相关技术已经渗入了设计领域中的不同方面,AI将如何影响和重塑建筑行业,目前都有哪些突破性的研究呢?建筑智能研究组(AIG)的郑豪博士,将展开讲述与梳理AIG的学术研究与应用项目,并比较AI建筑行业中的发展。正文以下三个部分讲解:1)建筑为什么需要人工智能?2)人工智能如何解决建筑问题?3)未来我们能做些什么?

1建筑为什么需要人工智能?

1.1从离散性到参数化设计

建筑被誉为人类文明的结晶。在历史长河中,建筑师一直在寻找一种设计方法来总结并实践建筑设计策略。从历史的角度来看,设计规则变得越来越复杂,并且需要越来越大的计算力来支撑设计规则的执行。但是实际上,建筑设计的核心理念是相同的:它是离散的,可以用状态和规则表示。状态即为建筑中的度量,而规则描述了将一种状态转换为另一种状态的方法。最终的建筑设计方案由状态的集合表示,即为建筑中的所有度量数据。

随着计算机科学的飞速发展,离散体系结构的概念在实践中得到广泛的应用。在建筑学领域,随着建筑数据的数字化,基于二维手绘图纸的设计方法逐渐演变为三维数字建模。随后在20世纪90年代出现的算法生成式设计打开数字建筑的大门。建筑师通过将设计规则和状态转换为编程代码和数据,在更短的时间内完成更复杂的设计。

(左)TheUniversalConstructor,(中)EvolutionofTuscancolumns,(右)MorphogeneticDesignExperiment

1.2设计师决策VS人工智能决策

正如尼古拉斯·尼葛洛庞帝(NicholasNegroponte)在他的《建筑机器》(TheArchitectureMachine)一书中所定义的那样,机器设计助手应该能够使当前的工序自动化,将兼容的工序转换为设计,并迭代计算设计数据。毫无疑问,当前的设计算法已经达到了设计助手的标准。但是,当我们讨论由计算力带来的设计行业变化时,计算机仍然仅被视为计算器,仅仅根据设计师给定的规则来生成设计,并没有自己的设计逻辑。设计师仍然凭借自己的直觉来主导一个设计。

近几年,随着人工智能(AI)的发展,计算机被广泛用于寻找现实世界问题的解决方案,将来自现实世界的信息映射到量化数据中,并找到它们之间的关系。人工智能解决问题的过程虽然不同于传统的对建筑设计的感性理解,但它们的出发点却是相同的,都在总结并应用规则。

计算机辅助设计VS人工智能决策式设计

因此,在这个人工智能和大数据的时代下,我们将讨论建筑设计行业可能的结合点。在人工智能参与的建筑设计中,设计人员提供案例来表示设计的初始和最终状态,计算机通过构建机器学习模型来拟合设计规则,然后将经过训练的模型应用于新设计的生成中。计算机将不仅是设计助手,而更是设计合作者,帮助建筑师根据设计规则做出决策。

1.3建筑+人工智能的突破点

在建筑设计领域,人工智能的应用范围包括三个方面:设计认知,设计生成和设计加速。每种设计的复杂度是不同的。因此,当设计任务的难度增加时,人工智能和人类设计师之间的主要区别就突显了出来。人工智能具有学习和实现复杂设计目标的强大能力,但是人类设计师可能无法在其知识和想象力之外的内容中游刃有余。

例如,在与工程相关的问题中,存在可描述且相对简单的目标函数,人类设计师和人工智能都可以轻松将其概括并总结为设计策略。在建筑设计领域,目标函数仍然是可描述的,但是比工程领域的目标函数更为复杂。面对目标函数模糊的复杂设计问题,人类设计师存在局限性。最后,当人类设计师遇到所能创造的简单规则不足以来概括的复杂逻辑时,人工智能在经过设计数据的训练,能产生超出人类设计师的能力,生成人类设计师几乎无法描述的设计案例。人工智能强大的学习能力将给设计行业带来新的突破口,使设计变成可描述的,可控的,可优化的过程。

2人工智能如何解决建筑问题?

2.1空间布局问题

考虑人工智能在建筑行业具体的应用场景,首先值得一提的就是空间布局问题。建筑师在对空间进行排布的时候,往往是根据某些行业共识,进行相对比较有理可据的设计。因此,这种“排平面”任务大多是有一种背后的逻辑在支撑的,建筑师根据一种有据可循的规则而完成的。所以,设计平面图这项任务,非常适合人工智能的参与。我们在年的研究中就实现了使用图像到图像的神经网络(GAN)来训练人工智能模型,让其根据平面图边界自动生成内部的布局图纸。

从平面边界到设计图纸的机器学习[1]

可是GAN的缺点也很明显,这种“一对一”的神经网络根据一种平面边界,只能给出一种平面图,而建筑师往往能给客户设计出多种方案。为了解决这个问题,我们将平面图进行了矢量化处理,从图形学而不是图像学的角度来重构平面图数据,使得数据本身的表达更具接近本质的抽象逻辑。

户型图的矢量化[2]

基于矢量化的数据,我们以户型图的生成为例,训练了一个混合式的神经网络。我们的人工智能模型不再只从表面的图像上去理解一张户型图,而是真正学习户型图背后的矢量逻辑,以更接近建筑师思考的模式来生成多种户型图方案。

平面布局问题的多解性[3]

在这种混合式的神经网络的作用下,对于一张用户输入的户型边界,程序可以自动生成多达种不同的户型图,其中涵盖了各种户型配置,比如一室一厅,或是两室一厅等等。其中也不乏一些具有特色的方案,比如拓宽的阳台空间或是较大的厨房等等,可以充分满足用户的不同需求。

对一个户型边界生成多达种不同的户型图[3]

对于空间布局问题,以上我们给出的是一种基于大数据学习的解决方案,我们替换不同的数据,比如商业楼的平面图,就能训练人工智能来学习并生成不同类型的建筑平面。

除此之外,另一种解决方案是基于评价函数和多目标优化算法的。这里我们以当下比较热门的强排问题为案例来介绍这种解决方案。强排问题可以理解为,在空间中摆放多个建筑物,使得它们满足一些列强制要求的同时,又能带来最大的优势。我们根据用户具体的需求,将这些强制要求和优势的评价写成了数学公式,通过人工智能的优化算法来寻找公式之中的最优解,进而生成强排方案。

空间布局问题的另一种求解模式:基于评价函数的优化[4]

从下面这个动画展示的优化过程中可以看到,程序首先读取用户预设好的场地和建筑信息。算法在随机尝试多种强排的可能性后,逐渐收敛到若干种可行解,最终找到最优化的解。这个最优解兼顾了场地周边的河流带来的景观优势和采光距离的要求等,形成了一种强排方案。

小区强排的优化过程[4]

在空间布局问题上,基于数据和基于算法的解决方案所适应的条件是不同的。我们在选择解决方案的时候,应当评估数据获取的难度和算法求解的难度,然后定制化的决定不同任务适应的技术手段。

2.2城市预测模型

同样基于平面图的机器学习,第二类应用专注于城市信息系统,训练人工智能来预测城市中的各种指标,辅助设计师或城市运营者改善城市环境。首先,在如今GIS系统发达,信息爆炸的年代,收集城市数据已经不再是困难的任务。而过于庞大的信息种类如果不加筛选,不相关的数据混进了人工智能的训练数据中,这将直接导致训练的效率下降,预测的准确率降低。因此,配合来自人类设计师的专家知识筛选需要收集的数据,是训练城市AI的第一步。

城市数据的收集和可视化[5]

完成训练的人工智能模型,就具有了预测能力,其能预测的内容即是训练时候我们筛选给它的数据类型。比如,在我们最新的一项研究中,我们应用手机APP的定位功能,收集到了大量用户的步行和骑行数据。我们将数据通过热力图的模式表现在了平面地图上,并训练AI来根据城市地图预测每个区域的用户经过次数。预测的数值越大的地方,说明有较多的人以步行或骑行的方式经过,给社区带来更多的活力。

城市活力预测模型:你的社区有活力吗[6]

基于同样的技术,我们还可以精确的预测城市犯罪率,确定每条街道甚至每栋建筑里发生犯罪的可能性。通过对近十多年的所有报警记录数据的解析,我们可以生成犯罪率热力图,直观的表示城市中每个社区的犯罪案件总数。在设计新城市,或是改造旧城市的时候,人工智能模型可以根据大数据学习的结果,预测当前城市设计的犯罪率,并从设计角度提供能降低犯罪率的改良建议。

城市犯罪率预测模型:你的社区安全吗[7,8]

在两种人工智能模型的共同作用下,我们建立了一套预测系统,帮助用户在决定居住地点(比如买房子)的时候,借助AI的力量找到最适合居住的小区,保证犯罪率较低的同时,社区活力能较高。当我们用不同类型的数据训练AI的时候,这项技术可以定制化的预测任意的城市指标,辅助用户决策。

城市活力与犯罪率预测模型:计算最佳居住地点[6-8]

2.3形态生成任务

人工智能不仅能学习二维的图像数据,还能学习三维的模型数据,辅助设计师进行三维创意的任务。我们在三维数据的机器学习方面,主要

转载请注明:http://www.0431gb208.com/sjszyzl/1515.html

  • 上一篇文章:
  • 下一篇文章: 没有了