毕业论文
您现在的位置: 智能建筑 >> 智能建筑市场 >> 正文 >> 正文

高维智慧企业的认知协同策略

来源:智能建筑 时间:2024/10/31
·实现智慧企业的关键是认知协同。它与昆虫王国的群体智慧(SwarmIntelligence)有许多相通之处。日本文化为实践智慧企业提供制度条件,因为它契合群体智慧。在日本文化之外,我们可以利用人工智能的增强能力设计类似的赋能结构,实践智慧企业战略。

·本文的主要贡献在两个方面:1)阐述从专业化劳动分工到认知分工与协同的趋势。2)解释人工智能的增强能力是实现智慧企业认知协同的关键技术途径。

《拥有智慧的企业》

野中郁次郎和合作者写的《拥有智慧的企业》一书的要点有三个:1)在人能改造环境和创造未来的时代,企业的实践智慧(Phronesis)着力点在有人文意义、有社会价值的持续创新上。2)为此,企业要让每位员工成为不但能变化、而且有思想的孙悟空。3)与之对应的管理方法是营造创变的“场”(Ba)和提炼持续创新的新组织习性(Kata)。

野中的“智慧企业”发展了西方管理的三个重要思想:核心竞争力、动态能力和组织习性。简而言之,核心竞争力容易陷入“刻舟求剑”的怪圈;动态能力过于大而化之,成为一种“杂货筐”概念;而源自经济进化理论的组织习性(Organizationalroutines)逊于解释人改造环境、创造未来的强烈意愿和能动性,特别是创变者(Entrepreneurs)打破旧习性、建立新习性的冲动价值。因此,野中阐述的“卡塔”(Kata)、创变的“场”(Ba)和实践智慧(Phronesis)可以成为一套新管理实践。

可是,野中的智慧企业有一个极其重要的推广条件:从专业化劳动分工走向基于问题情境的认知协同。亚当·斯密和涂尔干(EmileDurkheim)建议劳动分工,因为它有助于能力专业化和差异化,其假设是,人的学习能力和应用能力各有优势和劣势。专业化劳动分工可以扬长避短,综合个人能力,建立有差异化的组织优势。经济上的专业化分工对应演变出管理方面的组织结构。它演变出垂直等级功能结构。为激发创新,企业也试验各种组织流程再造,包括矩阵、任务突击队和“合弄制”(Holacracy)。但是,横向组织结构的效果、稳定性和维持成本一直困扰着追求持续创新的企业领导者,因为协调(Coordination)与合作(Cooperation)的组织交易成本太高。

“协调”要求成员持续的相互调整。“合作”需要成员判断什么时候支持同事、什么时候要求同事支持。协调与合作的背后是任务性质和组织角色的切换。切换涉及到判断、沟通、改变、再续、整合等一系列组织活动。人与人之间的任务和角色切换成本远高于流水线生产中的工具切换(Retooling),因为它要求复杂的认知协同。

认知协同关系到一系列集体思考活动:1)成员之间理解变化中的问题性质;2)成员有能力贡献对新问题的定义和解决方法;3)成员愿意主动参与问题讨论;4)对于不同于执行力的认知协同,成员有接受模糊性、暂时性和悖论问题的智慧习性。

上述认知活动的协调和合作成本极高,因为人的“有限理性”和专家隐性知识设置了很高的学习成本和沟通成本。所以,企业还是主要保持垂直等级的纵向组织结构,兼顾部分横向组织结构。这样,“持续的创新”就始终是一个战略难题。难题的本质是认知协同成本高。

野中的解决方法有二:一是突出强调建设持续创新的智慧企业的必要性;二是建议全员参与创新的新组织习性和创新互动的场。接下来,企业领导者要做的就是推动智慧企业的“卡塔”和“场”。

“智慧企业”的价值不难理解。持续创新的必要性也已经广为人知。但是,卡塔和创变场的案例主要来自日本企业。其中的一个关键因素是它们与日本文化兼容。例如,卡塔反映的是柔道“守、破、离”的文化。如果日本文化是一个必要前提条件,那么,智慧企业就很难普遍适用。

从另一个角度看,对执行组织任务,人工智能已经从能力自动化(Automation)发展到数据智能增强(Augmentation)。增强的认知能力降低有限理性影响,扩大利用隐性知识和直观感知能力。所有的组织任务都涉及到解析和解决问题。在解题上,认知协同可以被分解为四种决策活动:1)决定(Determination),它包括明确的因果关系和目标与手段之间的对应关系;2)反思(Deliberation),它包括识别偏差和从失败中学习;3)设计(Design),它包括重新优化排序目标和安排价值感知过程;4)探索(Discovery),它包括发现新问题和提出新秩序参数。野中的智慧企业讲的就是这四种决策活动如何通过卡塔和场达到认知协同的境界。我们认为,智慧增强阶段的人工智能可以支持同样的智慧实践,制造持续创新的管理效果。

本文将首先用“群体智慧”(Swarmintelligence)现象重新表述野中的智慧企业、卡塔和场的思想。然后,我们说明,刻画人工智能模型复杂度与表达能力的VC维与智慧企业有逻辑上的相似性。VC维度可以用来刻画人工智能模型的复杂/精细化程度,也可以类似标识一个企业的智慧丰富程度。之后,我们解释认知协同对应的四种问题情境观。最后,我们说明,人工智能策略可以兼顾认知协同的四种活动,从而帮助实现高维智慧企业。

来自昆虫世界的启发:群体智慧

在圣塔菲研究所(SantaFeInstitute),研究复杂性现象的科学家波纳贝(EricBonabeau)等学者发现,昆虫学家对蚂蚁和蜜蜂等群聚性昆虫的观察与复杂系统的自组织特征有关。在利用环境资源和维系蚁群和蜂群高度秩序性方面,蚂蚁王国和蜂巢都有分布式、灵活、鲁棒和自组织的系统特征。同一时期,贝尼(GerardoBeni)等学者把昆虫群聚世界的社会性和群体智慧介绍到人工智能领域。他们研究昆虫世界社会群聚特征,以及对人工智能“演化计算”的影响。

复杂的昆虫王国有令人叹为观止的精美秩序。它们是怎样协调和合作的?科学家发现,复杂昆虫世界其实遵守一些简洁的自组织互动规则。

第一,“间接沟通,主动共识”(Stigmergy)。蚂蚁之间没有接触交流,但它们通过环境留痕,间接沟通。例如,找到食物的蚂蚁会在行进路途上分泌一种激素。顺着同样路径的蚂蚁也会沿途不断分泌激素。它们在环境中留下的激素信号被同伴接受。同伴主动做出配合响应。昆虫群体合作完成各项任务,都是通过“主动共识性”规则来协调。

第二,“缺位就替补的多重角色”(Multiagency)。昆虫王国中,分工明确。保卫巢穴、采集食物、建筑巢穴均有特定的一群昆虫完成。不过,昆虫有分工,但无任务差异化限制。当负责孵化的缺位不在时,临近负责保卫的昆虫会替补承担孵化功能。类似的灵活和多角色任务协调在蚂蚁和蜜蜂等群聚昆虫王国中很普遍。

第三,“反应门槛规则”(Threshold-basedcollaboration)。什么时候主动替补?它依据某种数量密集度门槛。不同昆虫王国有高低不同的反应门槛。这种门槛规则自动影响昆虫的自组织行为。例如,当负责孵化的蜜蜂数量降低到一定程度时,负责保卫的蜜蜂就近替补,承担孵化功能。

第四,“适应环境的多种招募方法”。根据环境中食物分布的情况,发现新食物的蚂蚁有不同招募方法,有时是招募单个蚂蚁去新食物源,有时是成队招募。成队招募,往往是在环境食物源较少的情况下。单个招募,一般是环境食物来源多,有选择。

第五,“沿顺雏形的累积行动”。建筑巢穴时,蚂蚁和蜜蜂搬运和放置材料也有规律。它们会顺着巢穴中已经出现的雏形,延续积累。刚刚开始阶段,材料分类放置的雏形为后续累积设定了形态方向。后来的似乎很快就能顺着同样的形态,不断累积。

昆虫世界的群体智慧启发了人工智能学习方法。推而广之,人们用它描述“通过集体的自组织行为,分布式解决问题的策略”。群体智慧与野中建议的卡塔和场的方法有内在的相通之处。从昆虫世界到人工智能和智慧企业,群体智慧已经远远超过简单的生态模仿。它为企业成员之间认知协同提供了一个可以借鉴的知识呈现和表述形式。

对群体智慧做抽象表述,它们有下面的共性特征:1)它们都是关于一个复杂系统社会组织过程;2)都强调自组织能力;3)都只需要极少的、根本性的规则;4)都认可个体独立性和群体多样性的价值;5)都认识到分布式、非中央控制的协调形式的优势;6)“多角色行动者”(Multiagency),成员有分工,但又可以执行相邻的任务。对于智慧企业的持续创新,上述六条也是卡塔背后的抽象逻辑。

日本文化与群体智慧有极高的契合度。这也是野中的智慧企业思想容易在日本企业推行的重要制度因素。在其它文化背景下,推行智慧企业,认知协同的成本很高。但是,人工智能已经从能力自动化(Automation)发展到智慧增强(Augmentation)。它可以成为智慧企业的赋能技术结构。人工智能中的迁移学习(Transferlearning)和VC维度思想概念完全可以容纳智慧企业对多样性、自组织、少且根本的规则、多角色行动者、主动共识和分布式互动“场”协调的要求。

以下,我们先解释人工智能的迁移学习和VC维度与群体智慧逻辑的契合关系。然后,我们说明在实践群体智慧逻辑过程中,智慧企业需要在四种问题情境方面实现认知协同。最后,我们解释人工智能不同的决策算法是怎样支持解决四类问题过程中的认知协同的。

实现AI的群体智慧:迁移学习和VC维

野中的智慧企业强调,企业领导者要组织全员参与持续创新。它是一种高级形态的群体智慧。全员参与能提供广泛的信息来源,能混合借鉴各层级员工的隐性知识到动态的认知协同过程中,是持续创新的源泉。就认知协同的功能而言,人工智能中的深度学习方法,例如迁移学习(Transferlearning)和VC维度思想概念可以支持同样的活动。

简而言之,迁移学习就是将一个领域开发得到的知识(或某种不变量),运用到另一个领域,“举一反三”,提升另一个领域解决问题的效率以及效果热力学中,我们用能量转换的概念研究物质的热性质。我们

转载请注明:http://www.0431gb208.com/sjszlff/7778.html